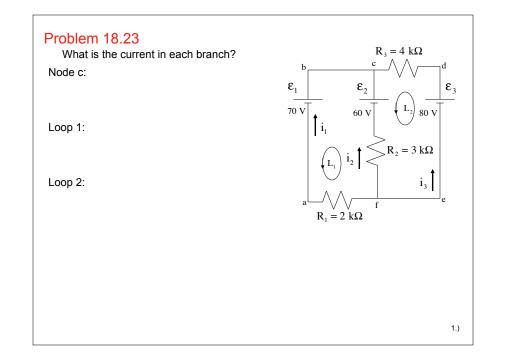
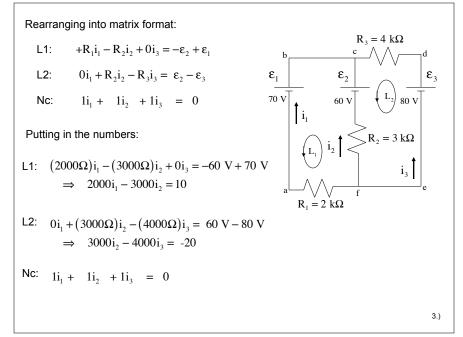
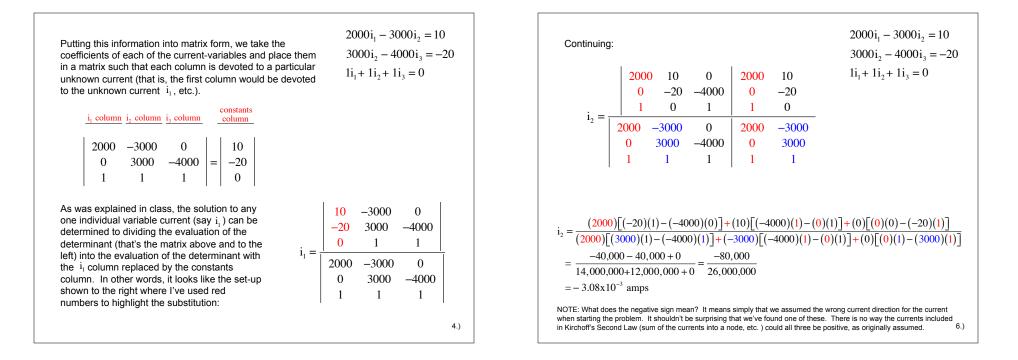


Node c:


 $i_1 + i_2 + i_3 = 0$


Loop 1 (starting at a and moving c.c.): $+R_1i_1-R_2i_2+\epsilon_2-\epsilon_1\!=\!0$


Loop 2 (starting at g and moving c.c.): $R_2i_2 + \epsilon_3 - R_3i_3 - \epsilon_2 = 0$

2.)

 $2000i_1 - 3000i_2 = 10$

 $1i_1 + 1i_2 + 1i_3 = 0$

 $3000i_2 - 4000i_3 = -20$

						$3000i_2 - 4000i_3 =$
	2000	-3000	10	2000	-3000	$1i_1 + 1i_2 + 1i_3 = 0$
	0	3000			3000	
i –	1	1	0	1	1	
i ₃ =	2000	-3000	0	2000	-3000	
	0	3000	-4000	0	3000	
	1	1	1	1	1	
$i_{3} = \frac{(2000)}{(2000)[}$ $= \frac{40,000}{14,000,0}$ $= 2.69 \times 10^{-1}$	+ 60,000				20)(1) - (0 -4000)(1) -	$\frac{(0)}{(0)} + (10)[(0)(1) - (3000)(0)(1)] + (0)[(0)(1) - (3000)(0)(1)] + (0)[(0)(1) - (3000)(0)(0)(1)] + (0)[(0)(1) - (3000)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)$

I like to do the same evaluation over and over again, so I reproduce the first and second column to the right of each matrix so I can execute over and over again the upper-left times bottom-right minus upper-right times bottom-left operation highlighted below with circles and parentheses shown below:

	$\begin{vmatrix} 10 \\ -20 \end{vmatrix}$	× −3000	0 -4000]	10 -20	-3000 3000	
	0	14	≺× ₁ }	0	1	
1 ₁ =	2000	-3000	0	2000	-3000	_
	0	3000	-4000	0	3000	
	1	1	1	1	1	
					$\frac{(00)(0) - (-}{-4000)(1)}$	-20)(1)] + (0)[(-20)(1) - (3000)(0) - (0)(1)] + (0)[(0)(1) - (3000)(1)]
			$=\frac{10,00}{10,000}$			
1	,	00,000 + 0	26,000	,000		
$= 3.85 \times 10^{-4}$	amps					
						4

Of course, you could have solved the problem long-hand. Doing so yields:

From Loop 1:

$$2000i_1 - 3000i_2 = 10$$

$$\Rightarrow i_1 = 1.5i_2 + .005$$

From Loop 2:

$$3000i_2 - 4000i_3 = -20$$

 $\Rightarrow i_3 = .75i_2 + .005$

Putting it all together in equation from Node c:

$$i_{1} + i_{2} + i_{3} = 0$$

$$\Rightarrow (1.5i_{2} + .005) + i_{2} + (.75i_{2} + .005) = 0$$

$$\Rightarrow i_{2} = -3.08 \times 10^{-3} \text{ A}$$

$$\Rightarrow i_{1} = 1.5i_{2} + .005 = 1.5(-3.08 \times 10^{-3}) + .005 = 3.85 \times 10^{-4} \text{ A}$$

$$\Rightarrow i_{3} = .75i_{2} + .005 = .75(-3.08 \times 10^{-3}) + .005 = 2.69 \times 10^{-3} \text{ A}$$

b.) As for the voltage across *c* and *f*, simply following the voltage changes (keeping track of positive and negative signs) from *c* to *f*. Using the current directions as originally defined, we get:

$$\begin{split} \Delta V_{cf} &= -\epsilon_2 + i_2 R_2 \\ &= -(60 \text{ V}) + (-3.08 \text{ x} 10^{-3} \text{ A}) (3000 \Omega) \\ &= -69.24 \text{ V} \end{split}$$

To check this, we can use the same approach to determine the voltage change across b and f going counterclockwise. (That number should be the same as the voltage change across c and f.) Doing so yields:

$$\Delta V_{bf} = -\varepsilon_1 + i_1 R_1$$

= -(70 V) + (.38x10⁻³ A)(2000 Ω)
= -69.24 V

8.)

Great jumping hazzahs. It works!

 $R_3 = 4 k\Omega$

 ε_3

10.)

80 V

i₃

 $R_2 = 3 k\Omega$

с

 $\boldsymbol{\epsilon}_2$

60 V

b

 $\boldsymbol{\epsilon}_1$

70 V

i₁

 $R_1 = 2 k\Omega$

	TI (whatever), you could do the following: ct <i>matrix A</i> to be a 3x3 matrix and put in:								
$\begin{array}{c ccc} 2000 & -3000 \\ 0 & 3000 \\ 1 & 1 \end{array}$	0 -4000 1								
2.) Hit QUIT, then MATRIX again, then EDIT, then select matrix B to be a 3x1 and put in:									
10 -20 0									
3.) Hit QUIT, then (A) this will call up <i>matrix A</i> , then x ⁻¹ this will give the inverse of matrix A , then the times sign, then hit (B) this will call up <i>matrix B</i> , then ENTER.									
What you will end up with will be SOUGHT AFTER "i" VALUES!!!3 2	3.85×10^{-4} , which it to say THE THREE 3.08×10^{-3} . Nifty, eh?								
	9.)								